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Summary_ 
In this paper we present analytical expressions for the osmotic and light-scattering 

second virial coefficients of polydisperse polymer samples in a good solvent. They are de- 
rived using the Schulz and the Lognormal molecular weight distribution respectively. The 
effect of interpenetrating coils is taken into account. Comparison is made with expressions 
already derived by Casassa using a hard sphere model. The reduction of the obtained expres- 
sions to simple scaling laws is discussed. 

Introduction 
One of the quantities playing a crucial part in the thermodynamics of polymer solutions 

is the second virial coefficient A2. This quantity has been object of many theoretical and 
experimental studies. So far most of the theoretical calculations have only been concerned 
with monodisperse polymer solutions. For such solutions the following scaling law has been 
generally accepted (1,2) 

A 2 = Ka M-a = A0p -a (1) 
where 

A 0 = KaM0 -a (2) 

Here M is the molecular weight of the polymer, M0 is the molecular weight of the repeating 
unit and p is the degree of polymerization (p = M/M0). The constant Ka depends on the 
polymer-solvent system and the exponent a is only a function of the solvent quality. For 
monodisperse samples of a linear, coil-like polymer in a good solvent it has been shown 
theoretically that 0.2 < a < 0.25 (1-3). 

Despite advanced techniques of polymerization and fractionation one always deals in 
practice with polydisperse polymer fractions. At first instance this seems to enlarge enor- 
mously the difficulties in the theoretical calculations. For a polydisperse polymer solution 
Casassa (4) has proposed the following equations, which turned out to be consistent with 
experimental results (5-8), 

N N 

(A2)~ = i~=l j~=l A..w.w.lj 1 j (3a) 
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where os and ls refer to the osmotic and light scattering virial coefficients respectively, Aij is 
the second virial coefficient determined by the interaction between two chains with degree 
of polymerization Pi and pj respectively and wi and wj are their respective weight fractions. 
The indices i and j run over all the N different chain lengths in the polymer sample. 

Following Casassa (9) we approximate these sums by integrals 
r  oo 

=fO ! dp 'w{p '}A{p ,p '}  (4a) (A2)os dp w{p} , 

(A2) ls = p w{p} }A{p,p' ~ (4b) 

in which Pw stands for the weight averaged degree of polymerization of the sample and the 
second virial coefficients and the weight fractions appear as continuous functions. 

Recently we have performed experiments to determine the behaviour of the coefficient 
Aii (8,10). For this purpose the second virial coefficients of mixtures of two chemically 
identical polymers with different molecular weights in a good solvent have been measured. 
Ten combinations have been examined. The ratios of the molecular weights of both poly- 
mers have been varied from 1.8 to nearly 100. The system used in these measurements was 
polystyrene in toluene. Measurements have been performed both with osmometry and with 
light scattering at 250C. The polystyrene samples have been analyzed with GPC. It has been 
found that the molecular weight distributions of all these samples were very narrow 
(iVlw/'lgl n < 1.1). In order to determine the values of the second virial coefficients Ai,  Aj and 
Aij the two fractions in each mixture were assumed to be monodisperse. With this assump- 
tion the values of A i , A; and Aii were determined for each combination of two polymers 
fractions. For the range ot~ molecular weigth ratios examined it has been found that the cross 
coefficient A ij was approximately equal to the second virial coefficient of the smallest poly- 
mer 

Aij = Aii for: Pj -> Pi (5) 

More precisely the values of the ratio Aij/Aii were  found to increase slightly with increa- 
sing molecular weight ratio up to a constant value of 1.1 for Pi/Pi >- 20. However, the devia- 
tions of the experimental values of the ratio Aii/Aii from 1 h-ardiy exceed the experimental 
error. Moreover, even for samples with a broad molecular weight distribution the contribu- 
tion to the second virial coefficient of the sample will mainly result from interactions be- 
tween pairs of molecules, for which p j /p  i is not extremely large. 

Also results from other experiments (5,6,11-13) seem to confirm eq.(5), although the 
experimental errors in the values of Aij/Aii in these experiments were usually larger than 
those in ours. 

Eq.(5) agrees in a first approximation with several theoretical predictions, based either 
on the two-parameter perturbation theory (8,14-20) or on the renormalization group ap- 
proach (8,21-24). Particularly, eq.(5) results from the treatment of Witten and Prentis (8,20), 
who started from an interpenetration model, in which the smaller chain is assumed to inter- 
penetrate into the larger. 

Another equation follows from the hard sphere model proposed first by Casassa (9) and 
later by Yamakawa (1) 

fp_.il(2-a)/3/3 
Aij= A i ~  1 + for Pi (6) 

~Pj tP0 J : p j>  

This equation greatly differs from eq.(5) and is confirmed by our experimental results only 
for 1 < pj /Pi  < 3 (8). 

The best quantitative agreement between a theoretical prediction and our experimental 
results is obtained with an equation proposed by Joanny, Leibler and Ball (24). According to 
this equation (see eq.(2.71) in chapter 2 of ref. 8) the ratio Aij/Aii does not differ appre- 
ciably from 1 within a large range of molecular weight ratios (i.e. p j / p i  < 106). 
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Hence eq.(5) can be used as a good approximation to calculate the second virial coeffi- 
cient of a polydisperse polymer sample. For that purpose we combine it first with eq.(1) and 
bring it in the appropriate form 

A{p,p '}=A0(p ' )  -a for: p' <p 
A{p,p'}=A0p -a for: p' >p 

Using eqs.(7) the integrals in eqs.(4) can be reduced to 
oo p 

(A2)os=2A0f 0 dpw{P}f0 dp' (p')-aw{p'} 

;0 ~,~:~or~. l  ~p~,p, ~p, ~p,~l-~w~p,~ 
t ! 

(7a) 

(7b) 

(8a) 

(8b) 

In the following these integrals will be further worked out for suitable forms for w{p} using 
two different molecular weight distribution functions, i.e. a Schulz function (25) and a Log- 
normal function (26). We will show that with these functions the double integrals can be 
solved analytically. 

Analytical solutions 
The Schulz distribution function (25) is given by 

(9) 

Here F(k+l) is the Gamma function with argument k+l and 

k: (~'~n~- 1/-1 : (~'~n~- 11-1 ~10~ 
After substituting this distribution function in eqs.(8) and performing some algebra, which is 
summarized in Appendix A, we arrive at 

(A2) os = A0(Pn)-aQS s{ k, a} = K~n-aQSs{k, a} 

(A2) l s  = Ao(Pw)-aQSs{ k, a} = Ka~w-aQSs{k, a} 
with 

o o  

QSos{k, a} = k a F(k+l-a) F(2k+2+n-a) 2a-2k-l-n 
F2(k+l~ n=~0 F(k+2+n-a) 

and 
QSs{k, a} = QSs{k+l, a} 

The Lognormal distribution function (26) is given by 

wLN{p} = (g)-l /2(p~)-lexp{-(ln p / I n  pm)2/[~ 2} 

with 

[~2 = 21n(~w/~n) = 21n(l+k -1) 
and 

Pm = (PwPn) 1/2 

(lla) 

(llb) 

(12) 

(13) 

(14) 

(15) 

(16) 
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Using this distribution function the integrals in eqs.(8) can be calculated. The derivation is 
given in Appendix B. The results are 

with 

- - a  L N  - a  L N  
(A2)os AO(Pn) Qos{13,a} = =KaMn Qo s{[~,a} 

- - a  L N  - a  L N  
(A2) ls = AO(Pw) Qls{~,a} = K~w Qls{~,a} 

LN LN Oo s{~,a} = Ol s{lS,a} = 1 + (2x)-l/2a~ + ~(al 2_a)~2 + 

1, 2 ,2,,4 l(2r0-1/2(5a3-6a2)[53 + ~ t a  - a )  p + . . .  

(17a) 

(17b) 

(18) 

Note that eqs.(ll) and (17) have been written such that they may be considered as 
extensions of the corresponding scaling relations for polydisperse polymers 

(A2) os = A0Pn -a = K~n --a 

( A 2 )  i s  = AOPw - a  = K ~ w  - a  

(19a) 

(19b) 

The coefficients Q appearing in eqs.(11) and (17) indicate the deviations of the values of the 
second virial coefficients from the above scaling behaviour. Obviously it is of interest to 
investigate further under which conditions eqs.(19) are reasonable approximations of eqs.- 
(11) and (17). 

Hard sphere analogs of eqs.(ll) to (13) have been derived by Casassa (9,1). They are 
represented by eqs.(11) and (13), but with eq.(12) replaced by 

2 4 1 2 
3F(k3a+~)F(k3a+g)  } (Hard Sphere Model ) (20) 

This variant for which explicitly use has been made of eq.(6) instead of eq.(5) will also be 
discussed. 

Results and discussion 

In Fig.1 (A2)os and (A2)ls are plotted against Mw/M n (= Pw/Pn) together with the plots 
obtained from the scaling relations (19). For the sake of convenience (A2)os originating from 
eq.(19a) was arbitrarily chosen equal to 1. The plots have been prepared with a = 0.217, i.e. 
the experimental value found for polystyrene in toluene at 250C from a double logarithmic 
plot of (A2)os versus M n (8). 

It is of interest to observe that for Mw/Mn < 2 (k > 1, 13 < 1.18) the second virial coeffi- 
cients obtained with_ e~.(5) follow closely (within 4%) the plots predicted by the scaling 
relations. Even for Mw/M n > 2 the second virial coefficients are reasonably represented by 
the scaling-law plots, that is, in the case of the Lognormal distribution the agreement is 
excellent, however, in the case of the Schulz distribution deviations from the scaling law are 
seen for (A~)9,t~ Obviously the influence of the type of distribution becomes observable in 
the range Mw/NI n > 2. 

The plots in Fig.1 based on the hard sphere model (eq.(6)) only tend to the scaling law 
curves in the rather restricted range Mw/Mn < 1.25 (k > 4, [3 < 0.67). Beating in mind that 
eq.(5) is more realistic than eq.(6) (see above) it must be concluded that the values of the 
second virial coefficients are overestimated by the hard sphere model in the range 
~w/~l n > 1.25. 

Fig.2 shows the curves of the ratio (A2)os/(A2)ls versus Mw/~n for a = 0.217. Again 
the overestimation effect of the hard sphere model is seen. For comparison some experimen- 
tal points have been added in the figure, all referring to polystyrene samples in toluene at 
250C. Measured data of ~w, ~n ,  (A2)ls and (A2)os for the samples P2, PS90 and PS300 
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Figure 1 (A2)os (full curves) and (A2)ts (dashed curves) plotted against 7Yi~/~4 n accor- 
ding to 1: eqs.(19), 2: eqs.(11) to (13), 3: eqs.(17) and (18) and4: eqs.(ll),(13) 
and (20), The value of the exponent a is 0.217for all cases. 

have been determined by ourselves (8), whereas those of PSLustrex have been reported (27). 
The molecular weight distributions were previously known from GPC measurements and 
satisfied more or less Schulz distributions. The experimental points fall rather well on the 
theoretical curve 2 but deviate significantly from the hard sphere curve 4. 

Another conclusion which may be drawn from Fig.2 is that within the domain of nor- 
real experimental errors the curve 1 corresponding to the scaling relations already forms a 
rather good approximation for the Schulz distribution, whereas it is even exact for the Log- 
normal distribution. This implies that the ratio (A2)os/(A2)ls may rather well be estimated 
by (~w,r/gin) a (8). 

Finally we remark that the global picture arising from Fig.1 or Fig.2 does not change 
much if at least the exponent a varies between 0.2 and 0.3, which is the typical range found 
experimentally for linear, coil-like polymers in good solvents (28). Thus our findings are 
expected to be valid more generally for linear coils in a good solvent. 

Conclusions 
With eqs.(ll) to (13) and (17) to (18) we have the disposal of analytical expressions for 

(A2)os and (A2)is for polydisperse polymers in a good solvent. These equations are based on 
a Schulz and a Lognormal molecular weight distribution respectively and account for tile 
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Figure 2 (A2)os/(A2)ls plotted against Mw/M n according to different treatments for  
a = 0.217. The meaning o f  the numbers is the same as in Fig.1. Experimental 
points including error bars are indicated with o. 

effect of interpenetration. For the case of the Schulz distribution analogous analytical ex- 
pressions originating from the hard sphere model have been shown to yield too high esti- 
mates for the second virial coefficients above the value/~w/'gTin = 1.25. 

Appendix A 
We want to calculate the double integral in eq.(8a) by applying a Schulz distribution 

function, which is given by eq.(9). First we define 

t = kp/pn and t '  = kp'/pn (A1) 

Substituting eq.(9) into eq.(8a) and introducing the variables t and t' we find 
oo t 

(A2)~ 2A0(Pn/k)-a f0 dt tke -t f0 d t '  ( t ' )k-ae -t' (A2) 
F2(k+l ) 

The second part of the integral is an incomplete Gamma function, for which we use the 
following series expansion 

f0 t )k-ae-t ' F(k+l-a)tk+l-ae-tn~ ~ t n d t '  ( t '  = = F(k+2-a+n) (A3) 



78 

After substitution of this equation into eq.(A2) a sum of Gamma functions is obtained, 
which is given by eq.(12) in the main text. The derivation for (A2)ls from eq.(8b) is analo- 
gous. In this derivation the parameter k should be replaced by k+l. 

Appendix B 
In order to solve the double integral in eq.(8a) with the Lognormal distribution func- 

tion, given by eq.(14), we first introduce the following variables 

ln(p/Pm) z' ln(p'/Pm) ~ z '+ �89 (B1) z=  [5 ' = ~ , y = z +  a[~, y ' =  
Then the distribution function can be rewritten as 

w {p }dp - ~-l/2e-Z2dz = g-1/2e-(y-alS/2)Zdy (B2) 

A similar equation exists for w{p'}dp'. Substitution of the eqs.(B1) and (B2) in the seond 
integral in eq.(8a) leads to 

P Y 
f0 dp' (p ' ) -aw{p'}= A0rc-1/2pm-aea2~2/4__~f dy' e -(y')2 = 

1A -a a2~2/4 t 1 ~t~0p m e tl  + err{y}) (B3) 

where eft{y} is the error function. 
Using eqs.(B1), (B3), (15) and (16) we find from eq.(8a) 

Further 

e~  

 A2 os A0 n dze Z2erflz+la l} 

y [ 2 } f 0 _z2{ [ 1 } [ 4 }} dz e-Z2erf z+ a[~ = dz e er r  z-~al3 - e r f  z a[~ 

(B4) 

035) 

For a < 0.3 and Mw/l~ n < 10 the value of al3/2 is small enough to expand the error functions 
in Taylor series. Taking all terms up to third order in a13 we then find for the integral 

f0 1 3n3 1 3,3 2 r~ -1/2 dz e-2Z2(a~- ]~ a p + ga p z + . . .  ) (B6) 

This integral is easily solved. The result is substituted in eq.(B5) and thereafter in eq.- 
(B4). The factor exp{(aZ-a)~2/4 in this equation is also expanded in a Taylor series. Then 
eq.(B4) can be rearranged to eq.(18). The derivation of the equation for (A2)ls from eq. (Sb) 
is analogous. In this derivation the parameter a should be replaced by a-1. 
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